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We consider the two-dimensional one-component plasma without a background 
and confined to a half-plane near a metal wall. The particles are also subjected 
to an external potential acting perpendicular to the wall with an inverse-power- 
law Boltzmann factor. The model has a known solvable isotherm which exhibits 
a Kosterlitz-Thouless-type transition from a conductive to an insulator phase as 
the power law is varied. This allows predictions of theoretical methods of 
analyzing the Kosterlitz-Thouless transition to be compared with the exact 
solution. In particular, we calculate the asymptotic density profile by resumming 
its low-fugacity expansion near the zero-density critical coupling in the insulator 
phase, and solving a mean-field equation deduced from the first BGY equation. 
Agreement with the exact solution is obtained. As the former calculation makes 
essential use of the nested dipole hypothesis of Kosterlitz and Thouless, the 
validity of this hypothesis is explicitly verified. 

KEY WORDS:  Kosterlitz-Thouless transition; Coulomb gas; renormaliza- 
tion equations; correlations; exact solution. 

1. I N T R O D U C T I O N  

The two-dimensional Coulomb gas refers to a neutral system of charged 
particles confined to a plane. The two species have opposite charge 
(magnitude q, say) and interact via the laws of two-dimensional electro- 
statics (logarithmic potential). To stop collapse between oppositely charged 
particles at low temperature, due to the singular behavior of the logarithmic 
potential at the origin, a hard-core or similar short-range regularization is 
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also required. For low densities and high temperature the two-dimensional 
Coulomb gas forms a conductive phase in which the positive and negative 
charges are dissociated and can screen a long-wavelength external charge 
density. In contrast, for low densities and low temperature, the system 
forms a dipole phase in which the positive and negative particles pair 
together. Perfect screening of a long-wavelength external charge will no 
longer occur. 

Intricate structures of nested dipoles were hypothesized by Kosterlitz 
and Thouless I~ for the dominant configuration contributing to the polar- 
ization as the transition point is approached from the dipole phase. On the 
basis of this remarkable physical insight, an iterated mean-field theory was 
formulated and quantities of physical interest thereby calculated in the 
vicinity of the critical point. This so-called Kosterlitz-Thouless transition 
between the conductive and dielectric states occurs at the coupling F = 4  
(F  := q2/kT) in the zero-density limit. 

The nested dipole hypothesis and the iterated mean-field equations of 
Kosterlitz and Thouless were recently put on a firmer footing by Alastuey 
and Cornu, 121 who made a low-fugacity (() analysis of the charge-charge 
correlation function and the dielectric constant e for F--, 4 +. At order (4 
it was proved that the configurations giving the leading order contribution 
to 1/e are the nested dipoles hypothesized by Kosterlitz and Thouless. 
Assuming this to be true at all orders, the low-fugacity series could be 
resummed, and the iterated mean-field equations of Kosterlitz and Thouless 
derived exactly. 

The pairing transition from a conductive to a dielectric phase is not 
unique to the two-dimensional two-component Coulomb gas. One-com- 
ponent log-potential Coulomb gases also exhibit this transition, provided 
the neutralizing background consists of a lattice of oppositely charged 
particles t31 or there is no background and the system is in the vicinity of 
a conductive medium, t41 For the latter class of system a solvable model 
has been formulated which exhibits a pairing transition as a microscopic 
parameter is varied/5~ The model is the two-dimensional one-component 
plasma consisting of particles of positive charge only confined to a half- 
plane in the vicinity of a metal wall and subjected to a one-body external 
potential such that 

e-~V~y~= y -~ (1.1) 

which acts in the direction perpendicular to the metal wall only. It is 
solvable at the special coupling F =  2, and exhibits a pairing transition as 

is varied through one. It is our objective herein to use the exact solution 
as a testbench for the predictions of theoretical methods of analyzing the 
Kosterlitz-Thouless transition for this model. 



Nested Dipole Hypothesis 505 

We begin in Section 2 by considering the screening properties of the 
system with respect to an infinitesimal external dipole. In Section 3 the low- 
fugacity resummation technique of ref. 2 is applied to study the density 
profile in the dielectric phase near criticality, and the density profile is 
further analyzed using the first BGY equation. In Section 4 comparison of 
the theoretical predictions with the exact results is made. Concluding 
remarks are made in Section 5. 

2. CHARACTERIZING THE PHASE 

2.1. Definit ion of the Model  

Consider a system of two-dimensional charges of strength q confined 
to a half-plane y ~> d and suppose a perfect conductor occupies the half- 
plane y ~< 0. For each charge of strength q at position (x, y), say, in the 
system, the effect of the perfect conductor is to create an image charge 
of strength - q  at position ( x , - y ) .  The electrostatic potential Nr, r') 
experienced by a test particle of charge q at r ' =  (x', y )  due to a particle 
of charge q at r = (x, y) is then 

q~(r, r ' )=q2 [v~ ( I r - r ' l ) -Vc ( I r - VI )  ] (2.1a) 

where 

v , . ( r - - r ' ) = - l o g { [ ( x - x ' ) 2 + ( y - y ' ) 2 ] ~ / 2 / L }  and ~ = ( x , - y )  (2.1b) 

For convenience the arbitrary length scale L henceforth will be set 
equal to unity. As well as interacting via the pair potential (2.1), the 
particles also experience a one-body potential with Boltzmann factor (1.1). 
Since the electrostatic potential q~(y) due to a background charge density 
qPb(Y'), d ~< y' < 0% is given by 

~b(y) = - req  dy' [ l Y - Y ' I - ( Y  + Y')] Pb(Y') (2.2) 

it is straightforward to check that the one-body potential given in (1.1) can 
be interpreted as being due to a background charge density 

p b( y' ) -- 2zcFy, 2 (2.3) 

However, it is more convenient for our purposes below to interpret (1.1) as 
nonelectrical in origin, and making no contribution to the total charge 
density. 
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2.2. Response to an External Dipole 

The conductor and dipole phases of the two-dimensional Coulomb gas 
can be distinguished by different screening properties of an infinitesimal 
external charge: the external charge is perfectly screened in the conductor 
phase, while only a fraction 1 -  1/e is screened in the dipole phase. For 
Coulomb systems near a metal wall an external charge is automatically 
screened by its own image. We consider instead the screening of an 
infinitesimal dipole. The image of a dipole pointing perpendicular to a 
metal wall has the same magnitude and direction as the original dipole. 
A conductor phase should perfectly screen such an external dipole. 

Let us use linear response theory to give a mathematical character- 
ization of the screening of an external dipole. An external dipole at 
r o := (0, Yo) which is of strength Po and perpendicular to the metal wall 
adds to the Hamiltonian a term 

0 Q(r')] (2.4) Hcxt=poI~ dr'o~oVc(lr'-rol)Q(r')+f dr'-~oVc(Ir'-rol' 

where ro := (0, -Yo), .9o := - Yo, and Q(r') denotes the microscopic charge 
density at point r'. The domain ~ is the half-plane y/> d. According to 
linear response theory, the change in charge density at a point r, 6q(r), say, 
due to the external dipole is given by 

6q(r) = -fl[(H,x,Q) - (H~x,) ( Q )  ] (2.5) 

From (2.4) the r.h.s, of (2.5) can be written in terms of the charge--charge 
correlation 

S(r, r') := (Q(r)  Q(r ' ))  - ( Q ( r ) )  (Q( r ' ) )  (2.6) 

a s  

f~ { 0  + 0_0__ vc(lr, _ ~o i) t  6q(r)=-flpo dr 'S ( r , r ' )  0~yoVc(Lr'-rol) 0.9o (2.7) 

On the other hand, our characterization of the conductor phase as perfectly 
screening the dipole says 

~ dr y ~ q ( r ) =  - P o  (2.8) 
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Substituting (2.7) in (2.8) gives the sum rule 

fl d r y y d r ' S ( r , r ' )  0-~yoVc(Ir ' - rol)+~ovc(Ir ' -~ol)  =1  (2.9) 

to be obeyed by the system in the conductor phase. 
The sum rule (2.9) can be further simplified. Now 

~ d r y ;  dr'S(r,r') v~( l r ' - ro l ) - - I s  dyy-~yoF(yo, y) (2.10a) 

where 

F(yo, y) := dx dx' dy' S(y', y; x ' - x )  

• vc(x'-Xo; y ' - Y o )  (2.10b) 

From the convolution formula for Fourier transforms we have 

f F(yo, y) = dy' ~(y', y; O) ~c(O; y ' -  yo) (2.11) 

In performing this step we are assuming that with y fixed, S (x ' - x ;  y', y) 
decays sufficiently as a function o fy '  and x - x '  for the integral in (2.10b) 
to be absolutely convergent and thus the order of integration to be unim- 
portant. Next, it is a straightforward exercise to deduce from Poisson's 
equation 

V%c(Irl) = - 2r~J(r) (2.12) 

that 

~(0; y ' - y o ) =  -Tr l Y ' -  Yol (2.13) 

Substituting (2.13) in (2.11) and then substituting the resulting expression 
in (2.10) and performing the differentiation gives 

0 

=re dy y dy' S( y', y; O ) sgn( y' - y o) (2.14) 
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Performing an analogous simplification on the second term on the 1.h.s. of 
(2.9), we thus deduce that (2.9) is equivalent, subject to the clustering 
assumption for S(x ' - x ;  y', y) noted below (2.11), to the simpler sum rule 

2~fl dy y dy' dx' S(y', y; x ' - x )  = 1 (2.15) 
JO - -  o ~  

This sum rule is to be satisfied in the conductive phase of any two-dimen- 
sional Coulomb system separated a distance d from a metal wall (when 
Yo = 0 this result was obtained previously by Jancovici~6~). 

A remarkable property of (2.15) is that it must hold for all positions 
(0, Y0) of the external dipole. Differentiating with respect to Yo and 
changing variables x' ~--* x ' +  x -  x0, we thus have 

f dr yS(ro, r) = 0 (2.16) 

Hence the perfect screening of an external dipole implies that the dipole 
moment of the internal screening cloud must vanish. For a phase which 
does not perfectly screen an external dipole, the sum rule (2.15) cannot 
hold. Rather, we would expect the 1.h.s. to depend on Yo and thus the 
dipole moment of the internal screening cloud will be nonzero. 

2.3. Phase Transit ion and Potent ia l  Drop 

In electrochemistry a fundamental quantity is the potential drop 
across the interface: 

,Jck = 2nq ay yp(y) (2.17) 

where qp(y) denotes the total charge density at distance y from the inter- 
face. As previously noted, ~5~ the formula (2.17) exhibits a further interpre- 
tation of A~b: it is directly proportional to the mean distance between a 
particle and the metal wall, or equivalently the mean size of the particle- 
image pairs. Therefore, A~b is expected to be finite in the insulator phase, 
while it should diverge in the conductor phase where the charges of the 
plasma are not paired by their own images. As seen from the integral 
expression (2.17), the finiteness of A~b is closely related to the large-distance 
behavior of p(y). In the insulator phase, p(y) should decay as 1/y 2+" 
( e> 0 )  when y ~  0% while in the conductor phase p(y) should decay 
typically a s  1/y 2 or slower. The relation between z1~b and the asymptotics 
of p(y) will be studied in Section 3, by resumming the low-fugacity 
expansions. 
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The potential drop A~b, or the internal dipole moment 

D(yo) := 2zt ~, dr yS(ro, r) (2.18) 

may be taken as equivalent indicators for characterizing the phase of the 
present model. A relation between both quantities can be obtained by 
starting with the compressibility sum rule 

- -  -, f dx' dy' S(y,  y ;  x - x ' )  (2.19) 
q- J--or., 

Taking the first moment of both sides gives 

fa~ Op(y) I f ;  f~-' f? dy y O~--qZ dy y -o~ dx' dy' S(y, y ' ;x -x ' )  (2.20) 

Next we want to interchange the order of the y and y'  integrations on the 
r.h.s, and interchange the order of integration and differentiation on the 
1.h.s. From (2.17) and the explicit form of S(y, y'; x - x ' )  (see Section 4) we 
see that a necessary condition for the validity of both these operations is 
that A~b be finite. Assuming this condition and the validity of the operations 
for the dipole phase, we obtain from (2.20), after using (2.17) and (2.18), 
the desired relationship: 

~-~ACk=qO l f j  dy, D(y,) (2.21) 

This equation can only valid in the insulator phase, since in the con- 
ductor phase, the quantity on the r.h.s, of (2.20) is given by the universal 
value (2.15), so we have instead 

r dy ) 1 = 2nF (2.22) 

We stress that, in the conductor phase, the integrations over y and y' in the 
r.h.s, of (2.20). cannot be inverted. Otherwise, the corresponding integral, 
which also appears in the 1.h.s. of (2.15), would vanish as a consequence of 
D(y)--0. This non-absolute convergence is related to a slow decay of S for 
some configurations. At the same time, the differentiation with respect to 
and the integration over y in the l.h.s, of (2.20) cannot be inverted either, 
because of a slow 1/y 2 decay of p(y) (see Section 3). 
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3. THE DENSITY PROFILE 

A feature of the two-dimensional Coulomb gas is that all coefficients 
in the low-fugacity expansion of the pressure and correlation functions are 
convergent for F~> 4. (7) This signals the transition from a conductive phase 
for F < 4  to an insulator phase for F~>4, in the zero-density limit. 
Similarly, by examining the second moment of the cluster integral for the 
density profile of a single particle, we expect that all the coefficients in the 
low-fugacity expansions for the model of Section 2.1 are convergent for 
F +  2~ > 4 and that this signals the transition from a conductive phase for 
F +  2a ~< 4 to an insulator phase for F +  20~ > 4, in the zero-density limit. In 
this section the low-fugacity expansion for the density profile will be 
studied for F + 2 ~ 4  +, which is the limit of approaching the phase 
boundary from the dipole side, using the techniques introduced in ref. 2. 
More precisely, we will study the asymptotic density profile pa~(y), which 
is defined as the portion of the low-fugacity expansion of p(y) that gives 
the correct leading-order singular behavior of each term in the low-fugacity 
expansion of zI~b, (2.17), in this limit. 

Alastuey of Cornu (2) complemented their study of the low-fugacity 
expansions of the correlations in the dipole phase of the two-dimensional 
Coulomb gas by an analysis of the BGY equations. In Section 3.5 the first 
BGY equation is used to compute the leading asymptotic behavior of the 
density profile. Unlike the resummation of the low-fugacity expansion 
calculation, there is no underlying assumption that the phase of the model 
is near the critical point on the dipole side. 

3.1. The Expansion at O(~ z) 

Suppose the model of Section 2.1 is generalized so that each particle 
is associated with a position-dependent fugacity (~-*((y) (or equivalently 
is subject to an extra one-body potential acting perpendicular to the inter- 
face). Denote the corresponding N-particle canonical partition function by 
ZN and grand partition function by ~. Then from the formula 

6 log ~ (3.1) 

it is easy to show that 

6 (2 6 

+ 0((3) (3.2) - Z~ ~ Zt ~(,) =,7 
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Indeed (3.2) applies to any one-component system. Inserting the form of 
the partition functions for the model under consideration we have 

r C- o~ I :  p(y) (2y)r/2 y~ + (2y)r/2 ),~ ; dx~ dy~ 1 -~. (2yl) r/2 y~ 

~ ( ( x - x , )  2 + (y - -  y,)2~r/,_ _ 1~ 
x [ \ ( x - x , )  2 + ( y + y i ) z j  

+ 0(~ 3) (3.3) 
J 

Substituting the term of (3.3) proportional to (, p~)(y), say, in (2.17), 
we find 

A~( | ) (2-r12d-r12-~+2 
= (3.4) 

2nq F/2 - ~ + 2 

(again, and below, we have used the superscript to indicate that only the 
term proportional to this power of ( is being considered). Thus Aq~ ll) is 
singular in the limit F + 2a ~ 4 +, and furthermore to leading order is inde- 
pendent of d. Both features are true of A~ ") in general. The latter feature 
implies that only the large-y asymptotic portion of p~")(y) contributes to 
the leading-order singular behavior of A~b I'~ and thus ,,I,,~t + , ~ y )  consists of 
terms in the asymptotic expansion of pO,~(y). With n = 1, there is only one 
term, which is p(i)(y) itself, so trivially p~((l) y) = pll)(y). 

Let us now determine the portion of the term of order (2 in the 
low-density expansion of p(y) which contributes to the leading-order 
singular behavior of A~b, and thus calculate p]~(y). For this purpose 
we consider the double integral which is part of the coefficient of the (2 
term in (3.3) and analyze it for large y. We first break the integration over 
y~ in the double integral in (3.3) into two intervals: [d, y] and [y, m].  
A change of variables y~ ~ yv) shows that the latter interval of integration 
gives a contribution to the asymptotic expansion of ptZ)(y) which is 
O(y-- 'w/2 --0t--(T/2 +a--2)), and a corresponding contribution to dt~ t2) which is 
O(1/(F+ 2~-4) ) .  For the interval [d, y],  use of the large-y expansion 

( x  - -  x ,  )2 + ( y _ Yl  )2~ r/2 2Fyl y 
( x _ x l ) Z + ( y + . F i ) 2  j - 1 ~  x2+ y 2 (3.5) 

and integration over x gives a contribution to the asymptotic expansion of 
pt2)(y) of 

12 .|, 
~,f/ dyl ~,(Yl) (3.6) (2y) r/2 y~ 
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where 

27tF 
~9~,'(Yl) := ~ - l '  d<~)h<~Y (3.7) 

�9 (2Yl) r/2 Yz 

Computing the integral, we find that (3.6) reads 

2zeF( 2 (d - l , , - /2  + ~ -  2) y-t1"/2+~-2}) ( 3 . 8 )  2ryr/2 +'(F/2 + ~ - 2) 

Note that the first term in the last parentheses above is all that need be 
included for the leading-order asymptotic expansion of pO-~(y). However, 
both terms give a contribution to Ar ~2~ which is O ( I / ( F +  2~-4)2) .  Hence 
p~(y) is given by both terms in (3.8), or equivalently the integral formula 
(3.6). Following ref. 2, we can interpret the integral (3.6) as resulting from 
the partial screening of the fixed particle-image pair of separation 2y by the 
smaller pair of separation 2y~, via the operator (3.7). 

3.2. Nested Dipole Hypothesis 

Rather than attempt to calculate ,,~,,Jt ,,~ ~'ar n~> 3, from the low-fugacity 
expansion (3.2), we make a nested dipole chain hypothesis, analogous 
in idea to that of Kosterlitz and Thouless tl~ and technically to that of 
Alastuey and CornuJ 2~ Technically we suppose all configurations con- 
tributing to p ~ ( y )  are nested chains of particle-image pairs, with the fixed 
particle-image pair the largest, and the screening operator acting between 
connected particles in the chain only. To specify the chains, we can ignore 
the images and consider the different ways of arranging the mobile particles 
into chains below the root particle at y. For example, at 0((4) there are 
four distinct configurations, which are illustrated graphically in Fig. 1. The 
ordering y >/yt ~> Y2/> Y3/> d is equivalent to the nesting of the particle- 
image pairs so that each pair screens a pair of smaller size. The contribu- 
tions to p~(y) fi'om each graph are 

[ ;,i'dY, 5~.,(Y,) ff' dy2"5~y.(Y2)][ ff'dY, 5~y(Y,)] 

dy, ~,(y,) dy2~,,(y2) 

ff'dyl S~.,.(y,) ff'dy2 ~..(yz) ff~dy3 ~,,.(ys) 
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Fig. 1. 

Yl- -  

Y3-- 

Graphical representation of the four distinct chains at 0((4). 

respectively. Furthermore, the graphs need to be weighted by factors of 6, 
1, 3, and 6, respectively, to account for relabeling degeneracy, and this linear 
combination then multiplied by an overall factor of (4/[3! (2y) r/2 y~]. 

The nested structure allows the general terms of order n in ( to be 
calculated by recurrence. As is shown in detail in ref. 2, Eqs. (4.26)-(4.28), 
we have 

~" ~ n  --  I 
I 

P]~(Y) - (2y) r/2 y" (n -- 1)! S~;- '(y) (3.9a) 

where 

S•,,- 
I "L' ( n -  1)! 

J~ I ( Y ) = p = , p ! ~ - i Z p ) !  

x y" (n--l-p_____)[ Iq,(y)...Iqo(y) 
qa>~O ql! "'" ql, ! 

q t +  . . .  + q p = n - - I  - -p  

(3.9b) 

with 

Iq(y) = ~' dy' ~ , ( y )  S ~ ( y ' )  (3.9c) 

Furthermore, it is shown in ref. 2 that p~-~l(y)  as given by this equation 
can be summed over n whatever the form of ~,(y'),  with the result 

Pa~(Y) - (2y)r/2 y~ exp dy, ,~y(Yl )(2Yl) r/2 Y~P~(Yl) (3.10) 

Inserting the explicit form (3.7) gives the nonlinear integral equation 

Pa~(Y) (2y)r/2 y~ e x p [ - 2 ~ F I f d y ,  Y lP~(Y, )  ] (3.11) 
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which uniquely determines p ~ ( y ) .  Note that even though this equation 
was derived with the assumption F+2~---, 4 + at each order in (, it is well 
defined for all values of F +  2cc 

3.3. Evaluation of Pa.(Y) 

By multiplying both sides of (3.11) by yr/2+a and differentiating with 
respect to y we obtain the nonlinear differential equation 

d 2rcF 
__;__ g(y) = _ [ g(y)]2 (3.12a) yr/2 +~- i  ay 

where 

g(y)  : = y F/2 + ~p zld#(Y) (3.12b) 

This is to be solved subject to the initial condition p ~ ( d ) =  ~/[2d) r/2 d ' ] ,  
obtained by substituting y = d in (3.11). Since the differential equation is 
first-order separable, the solution of the initial value problem is straight- 
forward, and we find 

( /(2y)  r/2 y 

PJ~(Y) = 1 + [2xF(/2r/2(F/2 + ~ - 2 ) ] ( d  2 - r / 2 - ~ -  y2-r/ ,_-~) (3.13a) 

provided F + 2~ # 4, while 

r y~ 
P ~ ( Y )  = 1 + 21 -r/ '-xF~ log y (3.13b) 

for F +  2ct =4.  
Inspection of (3.13a) shows that the exponents in the y-dependent 

terms of ~'a~,~, depend on only. In particular there is no 
dependence on the fugacity ~ and consequently the phase transition will be 
independent of ~. This behavior is to be contrasted with the two-dimen- 
sional Coulomb gas, in which the powers in the decay of the asymptotic 
charge-charge correlation at order ~12,,~ [ the quantity analogous to p a+(y)] 
are dependent on r and the phase transition is ~ dependent. 

We can use the resummations (3.13) to calculate a~b to all orders in 
~. First, from (2.17) we see that we require 

a>O 
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for A~b to be finite. Now from (3.13) we have 

((2 - 1"/2 - oQ/2rcFy 2, F +  2~ < 4 

Par ~ ~ 1/(2nFY 2 log y), F +  2~ = 4 (3.14) 
I ~  /a ,F/2  +ct 

Hence zl~b is finite for F + 2 c t > 4  (the dipole phase), and infinite for 
F + 2 ~ < 4  (the conductor phase), independent of the fugacity (, as anti- 
cipated above. 

The explicit value of A~b in the insulator phase is given by computing 
the integral (2.17) with p(y) replaced by (3.13a). We find 

zJr _ 2rrFfd 2 - I ' /2 - a  ] 

2~zq 2 ~ l ~  I l + 2r/2(F/2 +ot-- 2)J (3.15) 

Again we emphasize that even though the intermediate steps leading to this 
result require F + 2 ~ - - , 4  + at each order in (, (3.15) is well defined for all 
F + 2 ~ > 4 .  

3.4. Renormalization Flow Equation 

In the two-dimensional Coulomb gas the renormalization flow 
equation relates the asymptotic charge-charge correlation to the space- 
dependent dielectric constant, with the space variable an implicit parameter. 
In the present model we can obtain a renormalization flow equation by 
relating Pa~(Y) to 

A~b(y) := 2rcq dyl YlPJ,(Yl)  (3.16) 

TO do this we differentiate (3.16) and use the definition (3.12b) to obtain 

dAce(y) = 2~qy I -r/Z-~g(y) (3.17) 
dy 

Dividing (3.12a) and (3.17) then gives the desired equation 

dg( y ) F 
g(y) (3.18) 

d A ~ ( y ) -  q 

This flow equation is subject to the initial condition g(d)=2-r /2 (  and 
A(~(d)---O, and its exact solution is thus 

g(y) = 2 - r / 2 ( e  - r ~ J ~ ( y ) / q  (3.19 ) 
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g(Y) 
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x(y) 

Fig. 2. The flow diagram, where we have written x(y)  := F,d(y)/q. The different trajectories 
correspond to different values of F +  2cc The trajectories terminate for F +  2ct > 4. 

From (3.15), for F + 2 e > 4  the allowed values of Afb(y) are in the 
finite interval [0, zldp/2nq], while for F +  2e~<4, Adp(y) takes on all values 
in [0, oo[. The flow diagram obtained from (3.19) thus has the appearance 
sketched in Fig. 2. 

3.5. The First BGY Equation 

In this subsection we will complement the above low-fugacity resum- 
mation study by an asymptotic analysis of the first BGY equation. Let us 
denote the force.on a particle at r~ due to a particle at r2 by F2~, so that 

F21 = - V l ~b(rl, rE) (3.20) 

where ~(r~, rE) is given by (2.1a). Furthermore, denote the force on a 
particle at rl due to the self-image particle and the one-body potential by 
Film and F~ xt, respectively, so that 

Fil m -~- q2 . 0~ J (3.21) - -~yt  J and flF~Xt - Yl 

Then in terms of these forces the first BGY equation for the system is 

Vlp(r 1) = flF~Xtp(rl)+ flFilmp(rl) +f l  f dr2F21pl2)(rl, r2) (3.22a) J~ 
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Let us consider the y-components of this equation for y~ ---, oo. We 
might expect that in this limit we can replace pIZ)(rt, r2) in the final term 
in (3.22a) by p(rl)p(r_,), which is equivalent to saying that if we write the 
final term in (3.22a) as 

fl I~ dr2F2'p(r ' )  p(r2)+ fl ~ dr2F2,pr r2) (3.22b) 

the term involving p(2)T(r~, r2) decays faster for large y, than the term 
involving p(r,)p(r2) (which is a mean-field term), plus the one body forces 
on the r.h.s, of (3.22a). In the appendix this latter statement is proved sub- 
ject to a mild clustering assumption. Thus, neglecting the second term in 
(3.22b), we are left with the mean-field-type equation 

Oy--p(y~) = I-fl , dr 2 (F2,)yp(y 2) p(y,) (3.23) 

The integral over N in this equation can be simplified: 

I dr2 (F21).,, P(Y2) 

=-q2f_~162 dx2I 'dy2[~--3-~G(lr,-r2l)+o~vc(]f , -  

=-q'-f~'dy2[o-~i~c(O; 

= -2nq'- f ~ dy2p(y2) 
Yl 

(this result can also be derived from Gauss's theorem in electrostatics). The 
mean-field equation now reads 

~ p ( y , ) = [  F+2or 2~F;O~dy~p(y2)] P(Y,) (3.24) 
yl .~'1 

To solve this equation for large )q we seek a solution of the form 

rzl)] p(y_~) 

Yl -- Y2) --~Yl ~(0; y, + Y2) P(Y:) 

c 
P(Yl) ~ - -  

yf 

Substituting this in (3.24) gives 

pc ( F + 2 ~ ) c  
y~+ 1 2yf+ l 

2 ~ F r  2 

(p-- 1)y~ p- l  

(3.25) 

(3.26) 

822/79/3-4-2 
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For  p > 2 the second term on the right-hand side of  (3.26) can be ignored 
and we obtain a solution provided 

p=(F+2oO/2 (and thus F + 2 ~ > 4 )  (3.27a) 

For  p = 2 ,  (3.25) is an exact solution of (3.24) provided 

4 - -  F--2ot  
c = and F + 2~ < 4 ( 3.27b ) 

4nF 

For  F +  2ct = 4 we find, after equating the first two orders on both sides of 
( 3.24 ), that 

I 
p(y,)  (3.27c) 

2nl'y~ log Yl 

is an asymptot ic  solution. 
We emphasize that the above analysis is asymptotical ly exact and non- 

perturbative: the asymptot ic  formulas obtained hold for all values of  F, a, 
and (. As such, we can use these results to test the predictions (3.14) for 
the leading asymptotics of p(y) as derived from p,~o(y). Surprisingly, the 
results obtained from p ~ ( y )  are in complete agreement  with the nonper-  
turbative exact results, even though it has been assumed in the derivation 
of p ~ ( y )  that the phase of the model  is near the zero-fugacity critical point  
on the dipole side. 

4. C O M P A R I S O N  WITH THE SOLVABLE CASE 

4.1. The Phase 

When F =  2 the model of Section 2.2 is exactly solvable for all ct. ~5~ 
The exact expressions for the density profile and truncated two-particle 
distribution function are 

f ~ '  e - 4n),t 
p(y )=2n(y  -~ dt 1 + 2n( [~:' dY Y - ' e  -4"r' (4.1) 

and 

f : ,  e2niXt e - 2n( .i, I + y2 ) t 2 
p r ( r l ,  r2) = - (2n~) 2 (Yl Y,_)-" dt 1 + 2n~ ~,~' dY Y - ' e  -4"v' (4.2) 
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These expressions were used in ref. 5 to show that for ct ~< 1 the dipole 
moment of the internal screening cloud D(yo) as defined by (2.18) vanishes, 
while for 0c> 1 it is nonzero. This behavior was interpreted as indicating 
that the system exhibits a conductive phase for ~ <  1 and an insulator 
phase for ct> 1. In Section 2.2 we showed that the true indicator of a 
conductive phase is the sum rule (2.15), and the vanishing of D(y o) in a 
conductive phase is a corollary of this stronger requirement. 

Noting that for a one-component system 

S(y, y ' ; x - x ' ) = q Z [ p ( y ' ) 6 ( x - x ' ) ( ~ ( y -  y ' )+pr (y ,  y ' ; x - x ' ) ]  (4.3) 

and using the exact results (4.1) and (4.2), it is a straightforward exercise 
to show 

2rcfl dy v dy' dx' S( y, y'; x -  x ' ) =  1 .~ 
" .,.,, - ~  1 + 27r~ Ja dY  Y-~' (4.4) 

For 0t ~< 1 the second term on the r.h.s, of (4.4) vanishes and the sum rule 
(2.15) holds, thus implying a conductive phase. For 0c> 1, (2.15) is not 
obeyed, so the phase is an insulator. These conclusions are in agreement 
with those reached in ref. 5. 

In Section 3.3 we have shown that the potential drop A~b diverges for 
F +  2ct ~< 4 but is finite for F +  2cc > 4. In accordance with the interpretation 
of the formula (2.17) as saying Aq~ is proportional to the mean distance of 
separation within the dipole formed by a particle and its image, we have 
taken this behavior to be an alternative phase indicator to the sum rule 
(2.15) for this system. For the solvable model we have the exact result tSI 

LJq~ log l + 2 n ( _ - - ~ ) ,  0 t> l  (4.5) 
2zrq 

Remarkably, the expression for Aq~, (3.15), with F = 2  deduced from the 
asymptotic density profile Pa~(Y) is in precise agreement with this exact 
expression. 

4.2. The Asymptotic Density Pa~(Y) 

The asymptotic density Pa~(.v) is defined as the portion of the 
asymptotic expansion of p(y)  that gives the correct singular behavior of A~b 
as F + 2 c t ~ 4  § at each order in (. From (4.1) we can calculate Pa~(Y) 
exactly at F =  2. 
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Expanding (4.1) as a power series in ( and then performing the 
integration over t gives 

P(Y) = 2Y u j~o ( - 27t()J Y-J(=+ ') 

It dY, dYj )-I X . . . .  d/y, <]J Y~ Y~ ( Y' + "'" + Yj+ 1 (4.6) 

For large y the final factor in the integral can be approximated by 1 and 
we obtain 

~:' {((y/d)~___~_~l_l-1)) j p(y) ~ 2-~'~j~o ( -- 2;r j y-J(~,+ ') 

(4.7) 

The correction term in the asymptotic expansion above does not contribute 
to p~(y). Ignoring this term, we see that a geometric series remains, which 
after summation gives 

/ 2 y a  + I 

P'~e(Y) = 1 + 2~z[ (/(e -- 1)](d I -~ - y~-~) (4.8) 

Comparison of this exact result at F =  2 with the result (3.13a) obtained 
from the low-fugacity resummation using the nested dipole chain 
hypothesis shows that the resummation is exact at this coupling. 

4.3. Leading Asymptotics of Density Profile 

As noted in ref. 5, the leading large-y behavior of the density profile at 
F = 2  is readily computed from (4.1). We find precise agreement with the 
behavior (3.14) at /- '=2, which is obtained from both the low-fugacity 
resummation and the mean-field equation. 

It is interesting to note that since the asymptotic form of the density 
profile in the conductive phase is 

4 - F -  2~ 
p(y)~ 4rcFy 2 (4.9) 

The phase transition occurs when the l/y 2 tail vanishes. 
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5. C O N C L U S I O N  

The metal wall one-component plasma model of Section 2.1 exhibits 
both a conductive and an insulating phase. It has the special property of 
admitting an exact solution for the thermodynamics and all correlations 
along the line (F, ~ )=  (2, ct) in parameter space, tS~ This line intersects the 
transition line F +  2~ = 4. For general values of the parameters the tran- 
sition can be analyzed in a similar way to the Kosterlitz-Thouless transi- 
tion in the two-dimensional Coulomb gas. 121 In particular, by making a 
hypothesis that the dominant configurations are nested dipole chains [this 
is checked explicitly at 0((2)] ,  we can resum the low-fugacity expansion of 
the asymptotic density Par and calculate it explicitly as the solution of 
a nonlinear differential equation. 

Comparison with exact solution verifies that the general expression 
for pa~(y) is exact at F = 2 .  This provides compelling evidence for the 
correctness of the underlying nested dipole chain hypothesis. Since the 
nested dipole chain hypothesis also underlies the iterated mean-field equa- 
tions of Kosterlitz and Thouless I~1 (which are equivalent to the Kosterlitz 
renormalization equationsCS~), we have also added further weight to the 
validity of these equations. 

A P P E N D I X  

In this appendix, we will prove that in the limit Y l---4 O0 the second 
term in (3.22b), 

_ p~21(rl, r2) (A1) 

decays faster than the sum of the first term and the one-body terms on the 
r.h.s, of the BGY equation (3.22a), and therefore can be neglected in this 
limit. Our analysis is based on the simple assumption that for some 
l > e > 0  

IP~(r~'r2)l<p(rj)p(r2)(lrt 1 r2 lY (A2) 

where ! is a given length. We stress that the hypothesis (A2) is very reasonable 
since it merely asserts that the Ursell function p~(rl,r2)/[p(rl)p(r2)] 
decays for large separations I r~--r21 at least as fast as an inverse power. 
This weak clustering property surely holds in any homogeneous or inhomo- 
geneous fluid phase. 
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Using (A2) and the inequality [Y2-Yl[ ~ I r2 - r l  [, we find 

1 
X[(xz_xj)Z+(yz_y~)~_]i /2[(Xz_X,)z+(yz+yl)Z]t /2  (A3) 

In the integral on the r.h.s, of (A3), we can perform the integration over x2 
accord ing  to (91 

S 1 
-~c. dx2 [(X2 - -Xl  )2 + (Y2 -- Yl )2] 1/2 [(X2 __ XI )2 .4_ (Y2 + Yl )2] I/2 

_ 2  K(2(y2yl_)l/'-~ (A4) 
(Y2 + Yl) \ Y2 + Yl I 

where K(k) is the complete elliptic-integral of the first kind 

i::- a~ K(k) = _ k  2 1 sin 2 ~b) 1/2 

By splitting the domain of integration over 3'2 into the intervals [d, yl/2] 
and [yl/2, ~ [ ,  we then find from (A3) 

I"~'12'1<41"K(2~)(~"1) ~'p(yI~)r''Ii2dy~-y2p̀y2,y' Ja 

+4Fp(Yi) f,',I2dy2P(Y2). -("~2 - K \  "-~2--+ Yl "/ (A5) 

[we have also used the monotonicity of K(k)]. 
For Yl large, P(Yl) is expected to decay as c/y~', with p>~2 (this is 

shown explicitly in Section 3.5). The integral 

f~ "1'1/2 dy2 YzP( Yz) 
I 

then remains bounded by some constant times log(yi). Therefore the first 
term on the r.h.s, of (A5) decays at least as fast as log(yl)/y~ +l +L which 
is faster than the one-body self-image and external potential terms 
( ~  1/y~ '+ ~) appearing on the r.h.s, of the BGY equation (3.22a). Also, the 
integral 

- Yl \ Y 2 + Y l  / 
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remains bounded by a constant times 1/y p-~ +~', as shown by the variable 
change Yz = ~Yl- Indeed, the dimensionless integral 

~' 1 (2o0/2'~ 
fl/~ d~ 10c- I I ' K \ ~ +  l J  

is finite because the singularity of K(2ocl/'-/(oc+l)) at ~ = 1  is only 
logarithmic: 

K(2ocl/'-/(cc+ 1) )~  - l o g  I s -  11 

when 0c ~ 1. Then, the second term on the r.h.s, of (A5) decays at least as 
";' - -  q- E fast as l/y~ p l which is faster than the decay of the first term in (3.22b) 

(~ 1/y~P-1). Thus the whole two-body force (AI) can be neglected with 
respect to the other terms of the BGY equation (3.22a) in the limit yl --* oo. 
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